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Freezing of a quantum hard-sphere liquid at zero 
temperature: a density-functional approach 

A R Denton, P Nielabat, K J Runge and N W Ashcroft 
Laboratow of Atomic and Solidstate Physics and Materids Science Center, Cornell 
Uniivertity, Ithaca, NY 14853-2501, USA 

Received 26 June 1990 

Abstract. Quantum freezing of the ground-state Bose hard-sphere liquid is de- 
scribed by an extmsion of the classical density-functional method, in the form of 
the modified weighted-density approximation. to non-uniform qaanlum liquids at 
zero temperat-. As input, the theory require only structural and thermodynaraic 
information for the unifonn quantum liquid, this being obtained from the paired 
phonon analysis. Results for the solid-phase energies and freezing parameters of 
FCC, HCP, and BcC crystal structures are in generally good agreement with available 
simulation data, and are quite insensitive to the crystd structure. An analogous ex- 
tension of the Ramakrishnan-Yussouff second-order approximation leads to freezing 
parameters in generally poorer agreement with simulation 

1. Introduction 

In recent years the density-functional method [l], in a variety of formulations, has 
been widely applied to phenomena involving non-uniform classical liquids. A funda  
mental application has been to the freezing transition in simple liquids, in which the 
solid phase is treated as an extremely non-uniform liquid. Using information on the 
structure and thermodynamics of the uniform liquid, the method leads to predictions 
for the densities of the coexisting liquid and solid phases, the latent heat of transition, 
and the Lindemann parameter. Although agreement with simulation tends to vary 
with the system studied and with the version of the method used, especially notable 
success has been obtained in the case of the C ~ U S S ~ C Q ~  hard-sphere system, where the 
predicted freezing parameters agree with simulation usually to within afew percent [l]. 
This is a particularly important success since the hard-sphere system may be used as a 
reference system in perturbation theory studies of more realistic systems [2]. Although 
there have been numerous applications of the density-functional method to freezing of 
other classical liquids, to date comparatively few studies have been devoted to guan- 
tum liquids. An important issue, then, is the manner in which the general method 
may be extended from classical to quantum system, and whether, in particular, it 
can illuminate the physical nature of the freezing transition in quantum liquids. 

Recently, one version of the density-functional method, based on the 
Ramakrishnan-Yussouff (RY) second-order approximation [3], has been extended [4-61 
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and applied to freezing of a Lennard-Jones model of4He at finite temperatures [4], and 
to freezing (Wigner crystallization) of the ground-state Fermi one-component plasma 
[5]. The purposes of this paper are threefold: first, to describe a general extension 
of a quite different version of the density-functional method, based on the modified 
weighted-density approximation [7,8] (MWDA), from classical systems to quantum 
systems at zero temperature; second, to demonstrate its utility by applying it t o  the 
freezing of a Bose liquid of hard spheres; and third, to compare its predictions for the 
freczing parameters with simulation data and with the corresponding predictions of 
the RY second-order approximation. 

The remainder of the paper is organized as follows. In section 2 we describe a 
straightforward extension of the MWDA to ground-state quantum systems. In sec- 
tion 3 we outline the computation-by means of the paired phonon analysis [SI-of 
the liquid-state information requited as input to the theory. In section 4 we describe 
the application of the MWDA, as well as of the RY second-order approximation, to 
freezing or the Bose hard-sphere liquid, and report results for freezing into FCC, HCP, 
and BCC crystal structures. In section 5 we compare the results with available simu- 
lation data,  and discuss implications of the theory for the nature of quantum frcezing 
transitions. Finally, in section 6 we summarize and suggest the desirability of further 
studies on improving the accuracy of the liquid-state input. A preliminary report of 
this work bas been presented elsenshere [IO]. 

A R Denton et a1 

2. Densi ty-funct ional  method 

In a density-functional approach to non-uniform quantum liquids a t  zero temperature 
the central quantity of interest is the total ground-state energy Eb], a unique func- 
tional of the (spatially-varying) density p ( r ) ,  and a quantity which attains a minimum 
value (for constant average density) a t  the equilibrium density [ll]. In the absence of 
an external potential, Eb] can be conveniently separated into two contributions by 
writing 

where Eidb] is the ideal-gas energy, the energy of the non-uniform system without 
interactions, and E,[p] is the correlation energy, arising from internal interactions 
and exchange. The advantage of this separation is that Eidb] can be treated exactly 
(see section 4) .  In contrast, EJp] is unknown for non-uniform systems and must be 
approximated. 

The approximation for EJp] described below is a straightforward extension to 
non-uniform ground-state quantum liquids of the modified weighted-density approxi- 
mation [7] (MWDA).  The resulting quantum formulation closely parallels the classical 
formulation described in [7]. Its basis is t.lre assumption that the average correlation 
energy per particle of the non-unzfom system can be equated to its counterpart for 
the zlnzfonn liquid evaluated at a spatially-constant weighted density, which is fur- 
ther assumed to depend on a weighted average over the volume of the system of the 
spatially-varying physical density. The statement of the MWDA is then 
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where N is the number of particles, z the uniform-liquid correlation energy per particle, 
and where p is an effective or weighted density, defined by 

,?E- N drp(r)  dr'p(r')w(+ - r';p). (3) ' J  J 
As in the classical formulation [7,8], the self-consislent choice of the density argument 
,j of the 'weight function' w in (3) is an essential feature of the approximation. To 
ensure that the approximation is exact in the liinit of a uniform liquid [p(r) -+ p ]  the 
weight function must be normalized, according to 

dr'w(r - r ' ; p )  = 1. (4) J 
A unique determination of w follows from requiring that EtfWDAG.] satisfies the rela- 
tion 

where .(IT - r ' I ;p)  is now to be interpreted as an extension to quantum liquids of the 
classical Ornstein-Zernike direct correlation function (DCF). This requirement ensures 
that-to the extent that E and U are known exactly for the liquid-a functional Taylor 
series expansion of E2WDA[p] about the density of a uniform reference liquid is 'exact' 
to second order and also includes a subset of exact higher-order terms, specifically, 
those terms which depend only on derivatives of U with respect to density (see [7,8] 
for a more complete discussion). By now substituting the correlation energy (2) and 
weighted density (3) into (5). and making use of the normalization condition (4),  it 
is straightforward to show that the weight function is given (in Fourier space) by the 
simple relation 

where primes on c denote derivatives with respect to density. We note, from (4) and 
(6), that 

u(k = 0 , p )  = 2 4 p )  + p"'(p) = mc; (7) 

which may be interpreted as a 'quantum compressibility rule', with m the mass of a 
particle and cI the speed of longitudinal sound. 

Together, ( 2 ) ,  (3), and ( G )  constitute the extension of the MWDA to non-uniform 
quantum liquids at zero temperature. We emphasize that as input the theory requires 
only the correlation energy per particle and DCF of the uniform quantum liquid. 

3. Liquid-state i n p u t  

For the Bose hard-sphere system, the required liquid-state information has been ob- 
tained from the paired phonon analysis [9] (PPA). This takes a trial ground-state 
wavefunction of the Jastrow form 
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and determines the pseudopotential u(r) by minimization of the total ground-state 
energy according to 

A R Denlon e t  a1 

where, for our purposes, H is the Bose hard-sphere Hamiltonian. Two constraints 
are imposed on the form of u(r): first, that u(r) - 0 as r -+ 00, and second (for 
hard spheres), that  u(r) + 00 as r -+ U ,  where U denotes the hard-sphere diameter. 
To determine u(r) the PPA exploits the formal correspondence between the quantum 
probability density and the classical Boltzmann factor [12], where u(r) now plays 
thc role of a classical pair potential (hence the name ‘pseudopotential’). For a given 
u(r) the corresponding radial distribution function g(r, [U]) may then be determined by 
solving one of the approximate integral equations from the theory of classical liquids. 
Because u(r) turns out to be a relatively soft function of r [13-151, we have used the 
hypernetted chain (HNC) integral equation approximation [2]. Once g ( r ,  [U]) is thus 
found, the correlation energy can be computed from [9,12] 

and the random phase approximation then used to determine the change in pseudopo- 
tential Au(r) which gives rise to the lowest energy. Finally, Au(r) is added to u(r) 
and the entire procedure repeated until the energy can no longer be lowered. 

Although the PPA involves certain approximations, i t  nevertheless has been 
shown [le] to give excellent pseudopotentials U(.). The method can be tested by 
using the PPA u(r) in a Monte Carlo simulation to compute the energy. Such a test 
has been performed for the case of liquid 4He, resulting in the lowest energy so far 
found [16] for a wavefunctioii in the form of (8). In addition, the PPA gives approxi- 
mations both for the correlation energy (10) and for g ( r ) .  Figure l(a) illustrates the 
corresponding structure factor S(k) (the Fourier transform of g(r) - 1). From S ( k ) ,  
we then obtain the required v ( k )  from the simple relation [I71 

I t  is interesting to note that this form for u ( k )  can also be written as 

u ( k )  = kBTpc(k)a(k) 

where c(k) is the classical direct correlation function corresponding to S(k) and a ( k )  E 
(h’k2/4mkBr)[1/S(k)+l). Evidently, (12) sliowssomesimilarity to the classical result 
if the energy h2k2/2m is replaced by its equipartition value. An important feature of 
the PPA is its ability to treat long-wavelength phonons correctly. I t  accomplishes this 
by including in u(r) a slowly decaying longranged tail of the form 

which, as shown by Chester and Reatto [IS], gives the exact long-ranged pair corre- 
lation of the ground-state wavefunction. The slow decay of u(r) expressed by (13) 
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implies that  the structure factor must vanish as k + 0. More precisely, i t  can be 
shown [18] that  at T =  0 S(k)  vanishes linearly with k (see figure l(a)), according to 

( k  - O), hk 
2mc, 

S(k)  - - 
We note that (11) and (14) together are consistent with the quantum compressibility 
rule (7). It is important to point out, however, that the PPA does not guarantee 
consistency between E and u ( k ) ,  in the sense that E and u(k) do not necessarily satisfy 
(7) exactly. In other words, the speed of sound derived from c differs from that 
derived from v(k = 0) via (7). Therefore, in order to ensure that ( 7 )  is  satisfied, 
we have scaled the PPA u(k) by the factor (28 + pc”)/u(k = 0), which amounts to 
an increase in magnitude of roughly 20%. Figure l (b)  illustrates the resulting scaled 
v ( k ) .  

h u  h u  

Figure 1. ( a )  PPA structure factor S(k )  wmus k for the Bose hard-sphere liquid 
at reduced densities po3 = 0.10 (dotted), 0.15 (broken), and 0.20 (fdl) .  (6) Corre- 
sponding scaled PPA quantum direct cormlation function v ( k )  versus k, used as input 
to the density-functional method (see text). 

4. Freezing of the Bose had-sphere liquid 

Application of the density-functional method to freezing requires parametrization of 
the solid density p,(r). This involves first, the choice of a crystal structure and second, 
an assumption for the form of the density distribution about the lattice sites of the 
chosen crystal. As  in previous studies of the classical hard-sphere system, we have 
assumed a perfect crystal with a simple Gaussian form 

where 01 is a ‘localization parameter’ determining the width of the Gaussians centred 
on the lattice sites at positions R. Although the Gaussian approximation has been 
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widely used in previous applications to classical hard spheres, its use here for quantum 
hard spheres requires some justification. It is suggested by the Green function Monte 
Carlosimulation of a Lennard-Jones model of4Heof Whitlock et a1 [19], who examined 
the one-particle solid density and concluded that it was spherically symmetric about 
a given lattice site with only small positive deviations from Gaussian behaviour in the 
tail of the distribution. To our knowledge no such test has been performed for Bose 
hard spheres. Nevertheless, since we expect the hard-sphere and Lennard-Jones solids 
to exhibit rather similar behaviour, we judge these simulation results, and the ensuing 
results of the MWDA. to be reasonable justification for our use here of (15). 

Once the solid density has been parametrized, application of the MWDA proceeds 
with (i) a computation of the weighted density, (ii) the minimization of the total solid 
energy with respect to the parametrized density, and (iii) the location of the liquid- 
solid transition. The weighted density p is computed from the Fourier-space form 

A R Denton et a1 

of (31, 

where p, is the average solid density, and pc and wG denote the Fourier components 
at reciprocal lattice vector (RLV) G of the solid density and the weight function, 
respectively. In the Gaussian approximation (15) the solid density has the simple 
Fourier component 

-G2140 
PG = Pse 

Substituting pG (17) and wG (6) into (16) now leads to 

an implicit relation for p ,  which can be easily solved (at fixed ps and (I) by numerical 
iteration [20]. The iterative solution is illustrated graphically in figure 2(a), where 
the point of intersection between a weighted-density curve and the line of unit slope 
represents the fixed point to which the iterations converge. The resulting dependence 
of p on (I is shown in figure 2(b )  for the case of an FCC crystal. A key feature to note 
is the monotonic decrease of ,? with increasing (I, implying that the more localized 
the atoms in the solid, the lower the density of the effective liquid whose correlation 
energy best approximates that of the solid, Once the weighted density has  been 
computed from (19), the approximate correlation energy of the solid EYWDA is given 
immediately by (2). 

The ideal-gas energy Eid , can be formally expressed as 

where 
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Figure 2. (a) Graphical illustration of the iterative solution of (18): 2'") and 
> ( = + I )  denote the weighted density at the nth and (n + 11th iterations. Curves are 
shown for the Bose hard-sphere FCC crystal at localization parameter oe2 = 10 and 
reduad average solid densities pau3 = 0.2 (dotkd), 0.3 (broken), and 0.4 (fun). The 
point of intersection between a curve and the line of unit slope reprsents tlie fixed 
point to which the iterations converge. ( b )  Corresponding weighted densities versus 
localization parameter. 

is the kinetic energy operator, and &d the ground-state wavefunction of tlie non- 
interacting system. The density can be similarly expressed as 

Since for a non-interacting Bose system I),~ takes the general form 

where $ is a single-particle wavefunction, then 

and 

In the case of non-overlapping Gaussians-a good approximation at  densities near 
freezing-substitution of (15) into (24) leads to the particularly simple form [21] 

3 h2 
4 m  Ej,/N 2 --a 
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identical to the form usually assumed in variational Monte Carlo (VMC) simula- 
tions [13-151. The approximate total ground-state energy per particle of the solid 
is thus finally given by 

A R Denloti ei al 

Next, EbiWDA/N is minimized with respect to a at fixed p,, Figure 3 illustrates 
the minimization procedure, showing separately the behaviour of the correlation and 
ideal-gas energies. For simplicity, we have plotted for Eid only the linear approxima- 
tion of (24), though lhis is strictly valid only for au2 > 5.  Note that the ideal-gas 
energy increases wit.11 a ,  strongly opposing localization of the atoms about lattice sites; 
in contrast, the correlation energy falls off rapidly with a ,  strongly favouring localiza- 
tion. The competition between Ei, and E, may result-for suficiently high p, (as in 
figure 3)-in a minimum in the total energy at  non-zero a ,  implying the existence of a 
mechanically st,able solid [22]. Thermodynamic stability of the solid relative to the liq- 
uid is, however, deterniined by comparing the liquid and solid energies 1231. By now 
varying p, and repeating the miniiiuzatioii procedure, the solid-phase energy curve 
( E / V  versus p,) is obtained. The result for the FCC crystal is shown together with 
the PPA liquid-phase energy curve iii figure 4(a), where the crossing of the two curves 
confirms lhe occurrence of a freezing transition. Figure 4(b) shows the corresponding 
pressures [24]. Also shown in figure 4 are the VMC simulation data of Hansen el  al  [15] 
for the liquid and the FCC crystal. A more quantitative comparison between theory 
and simulation is given i n  table 1. The inset to figure 4(a) shows the dependence of the 
localization parameter a 011 the average solid density ps,  illustrating that an increase 
in the density naturally results in greater localization. The value of Q a t  the solid 
coexistence density is directly related to the Lindemann parameter L, defined as the 
ratio of the RMS displacement of an atom from its lattice site to the nearest-neighbour 
distance in the solid a t  coexistence. For the FCC, HCP and BCC crystal structures, L 
is equal to (3/aaZ)1/2,  (3/2na2)1/2 and ( 2 / c ~ a ~ ) ' / ~ ,  respectively, where a is the lattice 
constant. Corresponding to figure 4 ,  figure 5 shows the dependelice of the weighted 
density (at the energy minimum) on the average solid density, demonstrating that 
is always considerably lower than p,. 

Table 1. Energy per particle E / N  (in Units of h*/mo2) and pressure P (in units 
of h2/ma5) of bhe Bore hard-sphere FCC crystd at eero temperature over a range of 
average solid densilies pl. 

P 

Simulatiant M W D A  

0.244 8.810.1 9.98 
0.27 10.510.1 11.44 
0.3 12.610.1 13.34 
0.35 16.810.2 16.99 
0.4 21.910.2 21.37 
0.5 35.5=k0.3 32.78 

Simdationt MWDA 

3.5 3.22 
4.8 4.33 
6.8 6.00 
11.3 9.80 
18 15.30 
40 34.19 

~ . . _. . . , ,, , , , , , , , 

t See [15] 

The liquidsolid transit.ion is finally located by constructing a common tangent 
to the liquid and solid energy curves, ensuring equality of the pressures and of the 
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Figure 3. Ided-gas, correlation, and total ground-state energies per volume (units 
of h2/mo2) versus localizatiou parmeter  o. for tlie Bose hard-sphere FCC crystd 
a t  reduced average solid density p.03 = 0.3, where Eid is the linear apploximation 
of (25) and E, is computed using the MWDA (2). The minimum in EJV versus CI 

indicates a meehanicalb stable solid. 

PW’ 

60 

I. 

40 
R 
b n 

20 

0 _-- 
00 0.2 0.4 

P W 3  

Figure 4. (a) Total ground-state energies per unit volume (units of h2/mo5) of 
the Bose hadsphere liquid (from PPA) and FCC crystal (fmm MWDA).  Circles and 
squares are VMC simulation data [15] for the liquid and solid phases, respectively. 
A comon-tangent construction gives tlie densities of the liquid and solid at coex- 
istence. The inset show the denritydlependence of th* Localization parameter C I ,  

illustrating the increase in localization with increasing density. (b) Corresponding 
ground-state pressuias (units of h2/mos). 

chemical potentials in the two pliases, and yielding the coexistence densities as the 
abscissae of the points of common tangency. The resulting freezing parameters are 
given in table 2 for FCC, HCP and BCC crystal structures, together with available VMC 
simulation data [15]. We have chosen to compare the theorecical results with the VMC 
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00 
0 0  02 0 4  06 

P P 3  

Figure 5. Weighted density 6 at the energy minimum versus average solid density p r  
lor the Bose Iiard-splmie F C C  crystal, illustrating that the weighted density is always 
considerably lower than the average solid density. 

simulation data, rather than with presumably more accurate Green function Monte 
Carlo (GFMC) data [2G], because the liquid-state input to tlie theory was obtained by 
the same variational approach of the PPA. In any case, for hard spheres, the VMC and 
GFMC data generally differ by only a few percent [27]. 

Also shown in table 2 are tlie corresponding freezing parameters resulting from an 
analogous quantum extension of the RY second-order approximation [3] which is based 
on a iruncaied functional Taylor-series expansion of the correlation energy about the 
density pl of a uniform reference liquid: 

Table 2. Freezing parameters of the Bose hard-sphere system at zero temperature: 
average solid density pa,  liquid density PI, chsnge in density Ap, diange in energy 
per partide A ( E / N )  (units of hZ/mo2), Lindemann parmeter L, and c/m ratio lor 
the HCP crystal 1251. 

~~ 

Pa03 P I 9 3  Apu3 A ( E / N )  L c i a  
. . .. . , , 

Simulationt 
FCC 0.2510.02 0.2310.02 0.02 1.28 0.27 

MWDA 
FCC 0.284 0.246 0.038 2.668 0.240 
HCP 0.284 0.246 0.038 2.685 0.240 1.829 
BCC 0.280 0.24i 0.033 2.338 0.249 

RY 
FCC 0.315 0.278 0.037 3.183 0.233 
HCP 0.318 0.279 0.039 3.330 0.234 1.642 
BCC 0.317 0.280 0.037 3.234 0.249 
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where Ap(r )  E p , ( r )  - pl, and the subscript I indicates evaluation at  p ( r )  = pI. Al- 
though in a solid Ap(r )  varies rapidly compared with p , ,  the third- and higher-order 
terms in the expansion are ignored, on the original grounds that the higher-order 
direct correlation functions are generally unknown. Application to freezing requires 
minimization, with respect to the Gaussian solid density, of the grand potential differ- 
ence per unit volume between the solid and liquid phases AO/V at  the same chemical 
potential 1.1: 

AO/V E (Q, - n , ) / V  3 (E ,  - El)/\'- @(ps - p l ) .  (28) 

From ( 5 ) ,  (17), (25), and (27), the approximation for (28) now takes the form [ZS] 

(29) 

which is t o  be minimized with respect to both o and p ,  at  fixed pI. Equality of the 
liquid and solid pressures is finally ensured by variation ofp, until the minimum occurs 
a t  AnRY/V = 0. The minimization procedure is illustrated in figures 6 and 7. 

- G S I ,  , , , I , , , , , , , j  
G 10 20 

ac2 

Figure 6 .  RY secondorder approximation for the grand potential difference per unit 
volume AnfV versus localization parameter a for the Bose hard-sphere FCC crystal 
at reduced average solid and uniform liquid densities p s d  = 0.35, p i 6 1  = 0.30 (full) 
and p1u3 = 0.30, plu3 = 0.25 (broken). A minimum indicates a mechanically stable 
solid. 

5. fiiscussion 

From figure 4 and table 1, i t  is Seen that the FCC-crystal energies and pressures given 
by the MWDA are quite close to the VMC simulation data, differing by a t  most 15%. 
The deviation of the PPA liquid-phase c ( p )  from simulation seen a t  higher densities in 
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from table 2) is more than twice the corresponding prediction for classical hard spheres 
(L = 0.097, from [7]), in general agreement with simulation 1191. In the theory, the 
larger quantum value is a direct consequence of the relatively strong variation of the 
ideal-gas and correlation energies with the localization parameter (figure 3 of this 
paper should be compared with figure 2 of [7]). The linear increase of Eid with CI near 
freezing is much more rapid than the corresponding logarithmic increase of the ideal- 
gas free energy in the classical system [7,8]. Consequently, if the total energy is to 
have a minimum, then E, must decrease much more rapidly with CY than its classical 
Counterpart, the excess free energy. From (19), it is seen that the rate of variation 
of b, and hence of E<, with a is determined by the RLV magnitudes C, and that the 
variation is more rapid the lower the G,  or equivalently, the lower the average density 
of the solid. Whether E, actually decreases with a, however, depends crucially on 
the Fourier components of the DCF u(G). Evidently E, does decrease with the o(G) 
used here, and the result is n minimum of the total energy at a much lower value of 
a (weaker localization), and necessarily at, a much lower density, than in the classical 
system. 

The choice of crystal structure evidently has only a minor effect on the values 
of the freezing parameters, reflecting the fact that the predicted energies of the dif- 
ferent structures are extremely close, actually differing by less than 0.5% over the 
full density range. Indeed, on the scale of figure 4(a) the energy curves would be 
practically indistinguishable. The similarity of the two close-packed structures is not 
unexpected, considering t,hat the FCC and ideal HCP structures differ in real space only 
in third-nearest-neighbour coordinat,ion. This similarity has been previously observed 
in simulations both of a Leniiard-Jones model of 4He 1311 and of classical hard-spheres 
[32]. The similarity of the BCC structure to the close-packed structures is more in- 
teresting, and somewhat surprising given the significant differences between BCC and 
close-packed symmetries, reflected i n  the theory by the different sets of RLV entering in 
(18) and (29). I t  is in sharp contrast to the classical hard-sphere system, where both 
density-functional theory and simulation predict the free energy of the BCC crystal 
to be always significantly higher than that of the FCC crystal [33]. I t  may indicate 
a smaller sensitivity to structure i n  the quantum system, resulting from the larger 
RMS atomic displacements in the quantum solid. To our knowledge, there exist no 
simulation results for freezing of the Bose hard-sphere liquid into a BCC crystal with 
which to compare our prediction (but see [34]). 

6. Summary and conclusioiis 

In summary, we have proposed a general extension of the modified weighted-density 
approximation from classical systeins t o  quantum systems at  zero temperature, which 
requires as input only the correlation energy per particle and the direct correlation 
function of the uniform liquid. We have applied the theory to freezing of the Bose hard- 
sphere liquid, taking the liquid-state information from the paired phonon analysis. The 
resulting solid-phase energies and freezing parameters generally compare well with 
available simulation data,  although the result for the density change upon freezing is 
somewhat too high. An analogous extension of the Ramakrishnan-Yussouff second- 
order approximation leads to freezing parameters in generally poorer agreement with 
simulation. The large magnitude of the quantum Lindemann parameter, as compared 
to its classical counterpart, can be understood as a consequence of the relatively high 
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sensit,ivity to localization of the ideal-gas and correlation energies in the quantum 
system. Interestingly, the BCC crystal is found to exhibit freezing properties almost 
identical to those of the close-packed FCC and HCP crystals, a prediction which we 
suggest may be directly tested by simulation. 

The  theory presented here appears to be a satisfactory extension of the classical 
density-functional method to quantum freezing. I t  is important t o  mention, however, 
that  the freezing predictions are very sensitive to the liquid-state input, and that 
scaling of the PPA u ( k ) ,  to ensure that the quantum compressibility rule is satisfied, is 
crucial to the favourable agreement with simulation. Indeed, with the unscaled PPA 
u(k) as input the solid is found to be always unstable. Although the theory has been 
demonstrated here to be successful for some liquid-state input, it will be important in 
future to test i t  further by using even more accurate input, and also by applying i t  to 
other problems. In addition to freezing, the theory may prove userul in studying other 
bulk-phase phenomena, such as solidsolid transitions and elasticity phenomena. I t  
may also be applied to other simple systems, siicli as Fermi hard spheres or Lennard- 
Jones models of 3He and 4He [l9,2G]. Preliminary attempbs suggest that the theory 
cannot be directly applied to Lennard-Jones systems at  zero temperature, where the 
variation with density of the liquid-state energy is not sufficiently rapid to yield a 
weighted density low enough to stabilize the solid. Such systems may be treated, 
however, using perturbation theory w i t h  the hard-sphere liquid taken as the reference 
system 119,261. Finally, an important problem, which we are currently studying, is 
the extensioii of tlie theory to quantum systems at  f in i te  temperatures. 
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